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Can we design probabilistic transformers with higher efficiency?

Yes, E-ProTran has improved inference speed and scalability with comparable performance!

Motivation and Contributions

We present the performance metrics for ELECTRICITY and
WIKIPEDIA. The average predictions are from 100 forward
passes; shaded areas show 1 standard deviation.

Transformers excel in handling long-range dependencies in

sequential data and show promise in time series analysis. How-
ever, their complexity often results in overparameter-
ization, extended training times, and scalability chal-
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lenges, especially with complicated generative model assump- Type Att.  Rec. CRPS.. CRPS RMSE #Params Forw, Pass (sec)
tions. In this work, we propose Efficient Probabilistic Trans- PROTRAN  LIA v 0030 0.069 439.2 501,924  0.064 + 0.001
formers (E-PROTRAN), a re-design of Probabilistic Trans- E-PROTRAN LIA v  0.024 0075 5017 382,084  0.044 + 0.001
1 _ E-PROTRAN L | v - - _ _ _
formers (PROTRAN) to mitigate these problems. E-PROTRAN L v/ 0.024 0072 5302 315652 0.002 + 0.000
E-PROTRAN LIA X 0030 0077 5828 382,084  0.044  0.001
E-PROTRAN L | X — - - - —
Formulation and Problem Setting E-PROTRAN L X 0.029 0.079 508.7 315,652 0.003 = 0.001
. . . . . Txd 250 ! 20 1 - -
We work with multivariate time series z1.7 € R**% where 20 - 18 | Forecast start
d : : : : < 150 : 16 : — ProTran
x; € R% is a d-dimensional data vector at the discrete time =~ 1% . 14 . — E-ProTran w/o rec.
step ¢ € N*. We parameterize a generative model with joint 10 20 30 40 50 10 20 30 40 50 E-ProTranw/rec.
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of py.o(x1.1, 21:7|2 14, C1:7) can be used for forecasting in tem-
poral settings. The baseline work PROTRAN uses
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=1 t=1 - Forecasting on Electricity for the first test sequence. We show 4 of 370 dims.
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where L is number of layers in the encoder, T’ is length of the ol e —
temPOl’a| data. Type Att. Rec. CRPSy,, CRPS RMSE #Params Forw. Pass (sec)
PrROTRAN LIA v 0066 0320 5909.2 1,522,080 0.187 = 0.003
E-PROTRAN LIA v 0075 0353 60200 1,259,584 0.141 + 0.005
E-ProTran E-PROTRAN LI v 0.063 0.328 59322 1,126,720 0.007 + 0.001
E-PROTRAN L v 0.063 0.311 5936.8 1,060,416 0.007 + 0.002
For our model, we have the generative model with compo- E-PROTRAN LIA X 0081 0354 5983.3 1,259,584 0.139 + 0.005
ents E-PROTRAN L1 X 0054 0327 59451 1,126,720 0.007 + 0.002
. E-PROTRAN L X 0.053 0.316 5906.7 1,060,416 0.007 + 0.002
p%D(ZlIT‘xlito’ CliT) = H p¢(2t|$1;t0, Cl:T) (3) 10k ! 3000 : - - Forecast start
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Non-autoregressive attention to reduce computational over- 0 | 0 -
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head while allowing information flow over time through layer Time Time

attention.

Forecasting on Wikipedia for the first test sequence. We show 4 of 2000 dims.

Causal attention to lower layers to minimize propagation of
error from later time steps, and make sure our predictions
are independent of the forecasting length.

Stochastic z; only at the latent bottleneck; otherwise, it
introduces noise in the forward pass and thus affects the

gradients during training.
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